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Abstract

This paper presents a simple and e�ective post-processing method for compressed
images. This work focuses on the cyclic time-variance introduced by block-based and
subband transform coders. We propose an algorithm to (almost) restore stationarity
to the cyclo-stationary output of the conventional transform coders. Despite a simple,
non-iterative structure, this method outperforms other methods of image enhancement
known to us, e.g. linear and nonlinear �ltering, projection on convex sets (POCS),
wavelet-based and optimization-based methods. In particular, the proposed method
performs very well in suppressing both blocking and ringing artifacts. Furthermore, it
admits a solution with successive approximation. The resulting embeddedness is very
useful for multimedia applications such as image browsing on the world wide web.

1 Introduction

Transform coding is used extensively in image compression. Fast and e�cient implementa-
tions as well as reasonable rate-distortion characteristics have contributed to the popularity
of linear transforms. However, transform encoded images exhibit visually unpleasant ring-
ing and, in the case of block transforms, blocking artifacts at lower bitrates. At least part
of these artifacts can be removed through image enhancement and post-processing. In par-
ticular, JPEG image enhancement is of considerable practical interest due to its widespread
application in the compression of continuous-tone images.

A signi�cant body of work exists on the subject of compressed image enhancement.
The earliest attempts involved space-invariant [1] and space-varying �lters [2]. Another
family of methods utilized projection on convex sets (POCS) and its variations [3, 4]. Chou
et al. proposed a simple but e�ective nonlinear �ltering approach based on continuity on
the edges of the JPEG blocks [5]. Regularized least squares [6] and other optimization-
based approaches [7] have also been applied to this problem. Still other works in this area
include [8, 9, 10, 11, 12, 13].

Historically, reconstruction methods have relied on manipulating the behavior of encoded
images at, or close to, the block boundaries of block transforms. We propose an entirely
di�erent approach to the post-processing problem. We focus on the periodic time variance
introduced into the encoded image by the coding system, and our solution is based on
restoring the local stationarity of the signal.
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Figure 1: Energy distribution of DCT coe�cients in original (top) and compressed (bottom)
\Lena" image at two di�erent shifts. Energies shown on logarithmic scale.

On block encoded images, the proposed algorithm exhibits excellent performance. Pre-
viously known methods perform best at very low bitrates, i.e. on high-distortion images.
At moderate bitrates, the encoded image still has annoying visible imperfections, but not
much blockiness. Because most enhancement methods operate on block boundaries, they
lose e�ectiveness at moderate bitrates. In comparison, our method provides useful gain
even at moderate bitrates.

Blockiness of block encoded images is only one manifestation of cyclostationarity; in that
sense the proposed method is more general than its predecessors. As a result of this general
approach, our method is applicable not only to block-based transform coders, but also to
subband and wavelet encoded images. Research into post-processing for subband coding is
fairly recent, including stochastic regularization techniques [14], and morphological �ltering
aided by edge detection [15]. Our method, although much simpler, performs nicely on
subband encoded images and reduces the ringing artifacts signi�cantly.

The implementation of our algorithm is quite easy, and free of computationally-heavy
iterative optimization. The algorithm admits an embedded realization, a very attractive
feature for multimedia applications such as browsing on the world wide web.

2 Transform Coding and Periodic Time Variance

We �rst motivate our approach with a simple experiment. Figure 1 shows the energy
distribution of DCT coe�cients for original and compressed (JPEG) \Lena" image. In
each case (original and compressed) the DCT coe�cients were calculated at two di�erent
block segmentations that are (x; y) = (4; 4) pixels apart.

In the original image, these block spectra are virtually identical when measured at dif-
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ferent shifts. In the compressed image, however, the DCT spectra computed at di�erent
shifts are distinctly di�erent. This e�ect is easily explained: For the original image (no
compression), one expects by symmetry that the average DCT spectrum is approximately
the same at all shifts, and experiment veri�es this intuition (Figure 1, top right and left).
Compression eliminates many of the high frequency DCT coe�cients (Figure 1, bottom
left). This operation also creates discontinuities at the block boundaries that contribute
high frequencies, but these discontinuities are not \seen" by the block transform at the
(0; 0) shift, because the discontinuities will lie at the block boundaries. But if the DCT
spectrum is computed at other shifts, the discontinuities will contribute to high frequency
DCT energy to varying degrees (Figure 1, bottom right).

Since the blockiness of the encoded image is clearly a periodical (therefore not space
invariant) property, one may attempt to reduce these artifacts by an operation that restores
stationarity. In the following, we assume that the original signal x is stationary and is
encoded using transform quantization to yield x̂. We seek a method to approximately
stationarize x̂. Consider a typical length-N block transform U as follows
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The block transform of size N is the focus of our discussion, but our arguments easily
extend to the more general subband decomposition, where basis functions of adjacent blocks
overlap. The quantization operation can be characterized as a nonlinear matrix operator of
the form

Q = diag(::: ; q1 ; q2 ; ::: ; qN ; q1 ; q2 ; ::: ; qN ; :::) (2)

where each qi(:) is a nonlinear quantizer function applied to the appropriate vector element.
Transform coding can be characterized as follows

x̂ = UtQUx (3)

We denote A = UtQU to be the transform coding operator. Since each of Ut, Q, and
U are periodically time varying with period N , A is also periodically time varying with
period N . I.e., denoting by D the one-sample delay operator (thus DN is the N -sample
delay), we have

DN A = ADN (4)

Assuming that the input signal x is drawn from a stationary source, the output x̂ will
be periodically time varying with period N . By symmetry, one would expect that if the
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transform coding operator A is applied at all possible shifts to the signal (N distinct shifts),
and the outputs are averaged, the �nal result is a time-invariant operation. We proceed to
show this formally. To create each i-shift of the transform coding operator, we shift the
signal i samples, apply transform coding, and shift the result back by i

x̂i = D�i [A (Di x)] (5)

The average of all these shifts is our new signal

y =
1

N

N�1X
i=0

x̂i

=
1

N

N�1X
i=0

D�iADi x (6)

Even though each component x̂i of the sum is nonstationary, the sum will be stationary
if the operator

P
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where Equation (7) results from commutability of A and DN .

To summarize, if a transform coding operation is applied at all possible shifts and av-
eraged, the resulting operator conserves stationarity. But for our purposes we don't have
access to the original signal x. Our best estimate of x is the encoded version x̂, which we
will use as an approximation. Therefore, the new (almost) stationarized estimate of x given
x̂ is:

~x =
1

N

N�1X
i=0

D�iADi x̂ (9)
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Figure 2: System diagram

Each term in Equation (9) is an approximation of a term in (6), except for the term at
zero shift which is exact, since the transform coding operator A is idempotent.

For a typical block transform coder of block size 8 � 8 (e.g. JPEG), the direct form
implementation of the system is shown in Figure 2. Blocks at image boundaries can be
processed via symmetric extension.

3 Successive Approximation (Embedded) Approach

Let us take another look at Equation (9)

~x =
1

N

N�1X
i=0

D�iUtQUDi x̂

We rewrite this in a slightly di�erent way. Consider another linear transform V

V =
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For each row in U, there are N rows in V, making it a redundant transform. It is not
di�cult to see that

~x =
1

N
V
tQV x̂

Therefore, our simple image enhancement algorithm is equivalent to nonlinear processing
(using Q) in a non-orthogonal (redundant) linear transform domain. The redundancy of V
as de�ned above is by a factor of N . In other words, one can think of of V as application of
U at N di�erent sample shifts. But are all N shifts equally necessary/helpful? Obviously in
the original expression (6), without complete redundancy the output will not be stationary.
But Equation (9) is already approximate (because we use x̂ instead of x), and it is instructive
to see what happens if one further approximates it by discarding some of the terms in the
sum.

In particular, we consider the case of an 8� 8 block transform coder. Multiple levels of
redundancy are obtained by changing the resolution of shifts of A. At higher redundancies,
A is applied at more shifts (e.g., all possible shifts are used at full redundancy). At lower
redundancies, fewer shifts ofA are computed. Figure 3 shows the positions of the application
of A for a number of cases. To apply this on an example, we take the image \Lena,"
encoded by JPEG at 26.54 dB. Figure 4 shows post-processing results for this example.
The horizontal axis, marked \sampling factor," indicates the level of redundancy. Sampling
factor of one corresponds to the case where the operator A is applied only once (at zero
shift). Because of the idempotency of quantization, this is equivalent to no processing at
all, thus there is no gain in PSNR. Higher sampling factors represent the presence of more
and more terms in Equation (9), and the shifts at which A is applied in each case is shown
in Figure 3.

The experiment of Figure 4, as well as other similar experiments, show that in varying
the redundancy of V (or equivalently, changing the sampling factor) there exists a point
of diminishing returns. In fact, one can harvest virtually all possible gain with a sampling
factor of 32 (the quincunx lattice) thus reducing computational complexity by a factor of
two with almost no performance penalty.

Because each of the lattices shown in Figure 3 is a subset of the previous one, it is
possible to compute successive approximations to the reconstructed image. To compute
~x =

P
D�iADix̂, the choice of which shifts to compute �rst is free, thus we can create a

scan order that �rst goes through the shifts of the lowest resolution, then complete the next
higher resolution, and so on. When the computation of ~xi at one resolution is �nished, one
can compute the reconstructed image at that resolution. It is straight forward to show that
using accumulation, and implementing division by power-of-two with a right shift operation,
virtually little or no additional computation is required for this embeddedness.

4 Experimental Results

The results are very encouraging both in terms of PSNR and visual quality. In fact, the
PSNR improvements are superior to previously reported results known to us. Table 1
compares the performance of the new algorithm with some results in the literature. The test
image is the 512� 512 pixel \Lena." We use three di�erent quantization tables introduced
in [3]. These tables have also been used in [4, 16] for comparison purposes. We observed a
slightly di�erent JPEG PSNR compared to [4, 16] (on the order of a few hundredths of a
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Figure 3: Image enhancement with a 8 � 8 block transform. Each circle represents one
application of operator A. Sampling factor is the number of terms retained in the sum
in Equation (9). Sampling factor 64 corresponds to full redundancy (not shown), where
Equation (9) is fully implemented.
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Figure 4: Performance of the reconstruction algorithm at various degrees of redundancy
(Lena, JPEG)
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dB) which we attribute to small di�erences in JPEG implementation. In order to maintain
fairness despite small implementational di�erences, we report not the absolute PSNR, but
the improvement in PSNR. Figure 5 shows part of the enhanced image for JPEG encoded
\Lena."

We also applied this method to the output of wavelet compression algorithms. In par-
ticular we tested our algorithm with the output of the coder developed by Said and Pearl-
man [17]. At low bitrates (< 30 dB ) signi�cant visual improvements are observed, especially
in terms of ringing artifacts. The perceptual improvements seem to be on the same order as
dedicated methods designed for post-processing wavelet encoded images [14, 15]. We note
that our PSNR improvements for the wavelet encoded images are typically small, on the
order of 0.1 dB.

Figure 5: Left: Part of JPEG encoded 512 � 512 Lena. Right: Enhanced image through
re-application of JPEG.

Improvement in PSNR
JPEG PSNR POCS [4] wavelet [16] Adaptive [5] Our method

26.65 1.14 1.14 1.06 1.17

29.74 0.85 0.79 0.79 1.00

32.34 0.45 0.10 0.45 0.65

Table 1: Improvements in PSNR on JPEG-encoded images via di�erent algorithms. Algo-
rithms use identical quantization tables, given in [3].
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5 Discussion

� In equation (9), one can think of each term as an observation, and the sum as a
linear estimator of the original image. In that case, one can generalize the solution as
follows:

~x =
1

N

N�1X
i=0

�i D
�iADi x̂ (10)

where �i are the estimation coe�cients. One can �nd optimal �i through training.
We found that optimal �i are nonuniform, with �0 larger than other �i. However,
the distortion cost function in the �i-space must be rather 
at around the optimum,
because the distortion induced by optimal f�ig and uniform f�ig are almost identical.

� We observed that the output image of our algorithm in many cases resides in the
hypercube de�ned by scalar quantization in the transform domain. Therefore follow-
ing this algorithm with a projection on the quantization hypercube, or incorporating
our method into a POCS algorithm, may both prove to be of little utility. A �nal
resolution of this issue, however, needs further work.

� Although ~x often resides in the quantization convex set, individual terms in Equa-
tion (9) do not. One can project each term onto the quantization hypercube before
adding them up. This approach leads to varying amounts of additional gain, over and
above reported values, at the expense of computation.

6 Conclusion

This paper presents a new method for the post-processing and enhancement of transform
encoded images. Transform coding is a time-varying process and thus destroys the local sta-
tionarity of the signal. Our approach is based on (partially) restoring the local stationarity.
Our algorithm admits embedded implementation, and its performance is both numerically
and visually competitive with other known methods. Furthermore, this method is applica-
ble to non-block-based transforms. In the case of subband-encoded images, the perceptual
quality of the images are signi�cantly improved, along with a small improvement in the
PSNR.
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